College: Vijaya Teachers College (CTE)
Batch: 2019 -21
Student Teacher Name: Nagashwini N
SL.No. 1
|
Subject: Mathematics |
Date: 7-9-2021 |
Name of School: MES, Jayanagar
|
Unit: Quadrilaterals |
Time: 45 min |
Standard: 9th std |
Topic: Problems based on Properties of Parallelogram |
|
1. Teaching Points
1. Properties of Parallelogram
2. Theorem: In a parallelogram, opposite angles are equal
3. Problems: To find the missing angles (Model sum and Drill sum)
2. Content Analysis
3.
The pupils will
|
Instructional objective |
Task Analysis |
1 |
Explain the properties of Parallelogram |
Recall the meaning of parallelogram |
|
|
Recall the angle sum property of quadrilateral |
|
|
Recognize that the parallelogram has 2 diagonals intersecting each other |
|
|
Identify the given 3 examples are associated with parallelogram and all 3 have same properties. |
|
|
List the properties of parallelogram |
|
|
Explain the properties of Parallelogram |
2. |
Prove that, In a parallelogram, opposite angles are equal |
Recognize that adjacent angles of parallelogram are supplementary using 3 examples with given measurents |
|
|
Read the theorem statement |
|
|
Identify the geometrical figure to be drawn |
|
|
Draw the rough geometrical figure |
|
|
Identify what is given |
|
|
Write the data in symbolic form |
|
|
Identify what should be proved |
|
|
Reason deductively that the adjacent angles are supplementary |
|
|
Reason deductively that 2 pair of adjacent angles equated |
|
|
Reason deductively that by simplifying the equation, opposite angles are equal |
|
|
Conclude that opposite angles in parallelogram are equal |
|
|
Prove that, In a parallelogram, opposite angles are equal |
3 |
Solve the problems on parallelogram using its properties |
Read the problem statement |
|
|
Identify the known and unknown parameter |
|
|
Recall the transverse line cuts the parallel lines then alternate interior angles are equal |
|
|
Recall the angle sum property of traiangle |
|
|
Recall that vertically opposite angles are same |
|
|
Recall the properties of parallelogram that adjacent angles of parallelogram are supplementary |
|
|
Apply the property and calculate the unknown angle |
|
|
Solve the problems on parallelogram using its properties |
4. Instructional Strategy
1. Properties of Parallelogram
Inducto deductive method
2. Theorem: In a parallelogram, opposite angles are equal
Inducto deductive method
Analytic and synthetic method
3. Problems: To find the missing angles (Model sum and Drill sum)
Problem solving method
5. Instructional Material
1. Meaning of parallelogram and its properties
3 types of closed figures with 4 sides (congruency triangles of a parallelogram)
2. Theorem: In a parallelogram, opposite angles are equal
Chart to show the consecutive angles are supplementary (A + D = 180°)
Prove that Opposite angels of parallelogram ABCD are congruent (D = B).
3. Problems: To find the missing angles
Model sum problem model and chart
6.
Content Analysis |
Learning Experience |
|||||||||||||||||||||
Teachers Activity |
Pupils Activity |
|||||||||||||||||||||
|
Good morning teachers |
|
||||||||||||||||||||
Engaging |
Good morning students |
|
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
How are you all |
Fine mam |
||||||||||||||||||||
|
Can you tell me which baranch of mathematics deals with shapes and measurement? |
Geometry |
||||||||||||||||||||
|
Look at this paper. Show top of the paper, board and tell that this is a plane surface. |
yes |
||||||||||||||||||||
|
Draw a line with 2 arrows and ask what is this? |
line |
||||||||||||||||||||
|
Draws another line. Are 2 line meet each other? |
no |
||||||||||||||||||||
|
What are these 2 line called, which does not meet each other? |
Parallel lines |
||||||||||||||||||||
|
What are parallel lines? |
If 2 lines does not meet each other at both the ends then it is called parallel lines |
||||||||||||||||||||
|
Let us look at the two lines AB and CD in figure above. They intersect at point O. What are these lines called? |
Intersecting lines |
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
Draws a closed figure with 4 sides and ask the students, is this a closed or open figure.
|
Closed figure |
||||||||||||||||||||
|
How many interior angle does this closed figure has? |
4 |
||||||||||||||||||||
|
How many sides does this closed figure has?
|
4 |
||||||||||||||||||||
|
How many vertices it has |
4 |
||||||||||||||||||||
|
What is this figure called? |
quadrilateral |
||||||||||||||||||||
|
What is quadrilateral? |
It is a closed figure with 4 sides, 4 angles and 4 vertices. |
||||||||||||||||||||
|
Do you know any types of quadrilateral? |
Square, rectangle |
||||||||||||||||||||
|
Parallelogram is a type of quadrilateral with opposite sides are parallel. |
|
||||||||||||||||||||
|
Good |
|
||||||||||||||||||||
|
Once there was a person called Sham who was an architect, living in a village built a wood factory in his friend Kumar’s field. Kumar was told the shape of field is in parallelogram by his friend Sham, but Kumar wanted to find the shape parallelogram field?
Kumar was having 2 measurements given by an an architect Sham. |
|
||||||||||||||||||||
|
Students observe this picture and focus on the measurements. |
|
||||||||||||||||||||
|
Teacher shows a wood factory in the field (Chart), and the shape of field is parallelogram as shown in the figure. |
|
||||||||||||||||||||
|
In Parallelogram ABCD, and O is the center given that angle OAB = 70 degree, OBC = 30 degree and angle AOD = 100 degree. Find all other angles. |
|
||||||||||||||||||||
|
Students do you know how to find all other angles and find shape of parallelogram field? |
No response |
||||||||||||||||||||
ICA |
In Parallelogram ABCD, and O is the center given that angle OAB = 70 degree, OBC = 30 degree and angle AOD = 100 degree. Find all other angles. |
|
||||||||||||||||||||
Topic Declaration |
Problems based on Properties of parallelogram |
|
||||||||||||||||||||
Development |
|
|
||||||||||||||||||||
1. Properties of Parallelogram |
Students observe this is a parallelogram it is divided into 2 triangles. |
|
||||||||||||||||||||
|
What is the sum of interior angles of triangle |
180 degree |
||||||||||||||||||||
|
How many triangles are there in parallelogram? |
2 |
||||||||||||||||||||
|
Do you know the sum of interior angle of parallelogram equal to? |
360 degree |
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
Now observe this 2 triangles, I superimpose one triangle over other, are they having same shape and same size? |
yes |
||||||||||||||||||||
|
Are the triangles congruent? |
Yes, triangles are congruent |
||||||||||||||||||||
|
Teacher demonstartes that 4 triangles formed by diagonals of closed figure are congruent to each other. |
|
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
Does in example 1 closed figure, each of the diagonals divides it into two congruent triangles? |
Yes, triangles are congruent |
||||||||||||||||||||
|
in example 1 If 2 triangles are congruent are sides and angles same or different? |
All the sides and angles are same |
||||||||||||||||||||
|
Does in example 2 closed figure, each of the diagonals divides it into two congruent triangles? |
yes |
||||||||||||||||||||
|
in example 2 If 2 triangles are congruent are sides and angles same or different? |
All the sides and angles are same |
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
|
|||||||||||||||||||||
|
Can you identify the type of closed figure it is? |
parallelogram |
||||||||||||||||||||
|
What is common in all the 3 examples |
|
||||||||||||||||||||
|
What do you infer from this table |
So, in a parallelogram, each of the diagonals divides it into two congruent triangles |
||||||||||||||||||||
|
|
Opposite sides of parallelogram are equal |
||||||||||||||||||||
|
|
Opposite angles of parallelogram are equal |
||||||||||||||||||||
|
|
Opposite sides of parallelogram are parallel |
||||||||||||||||||||
|
These are the properties of parallelogram |
|
||||||||||||||||||||
|
Now observe the figure 1, 2 and 3 fro chart |
|
||||||||||||||||||||
|
If a transversal cuts the 2 parallel lines then the sum of corresponding internal angles is 180 degree |
|
||||||||||||||||||||
|
|
|||||||||||||||||||||
|
What do you infer from this table? |
Adjacent angles of Parallelogram are supplementary |
||||||||||||||||||||
2. Prove that opposite angles are equal in a parallelogram |
Given:
|
Parallelogram ABCD |
||||||||||||||||||||
|
To prove: |
Angle A = Angle C and Angle B = Angle D |
||||||||||||||||||||
|
Proof: Here since the figure is parallelogram ABCD given, Consider AD||BC |
|
||||||||||||||||||||
|
What is angle A+B |
180 degree |
||||||||||||||||||||
|
Why? |
Because adjacent anges of parallelogram are supplementary |
||||||||||||||||||||
|
So, Let A+ B = 180 degree be equation 1 |
|
||||||||||||||||||||
|
What is angle B+C |
180 degree |
||||||||||||||||||||
|
Why? |
Because adjacent anges of parallelogram are supplementary |
||||||||||||||||||||
|
So, Let B+ C = 180 degree be equation 2 |
|
||||||||||||||||||||
|
From equation 1 and 2, what we get in LHS and RHS |
A+B = B+C |
||||||||||||||||||||
|
Simplifying this A+B = B+C what we get ? |
A=C |
||||||||||||||||||||
|
Here since the figure is parallelogram ABCD given, Consider AB||CD |
|
||||||||||||||||||||
|
What is angle B+C |
180 degree |
||||||||||||||||||||
|
Why? |
Because adjacent anges of parallelogram are supplementary |
||||||||||||||||||||
|
So, Let B+ C = 180 degree be equation 1 |
|
||||||||||||||||||||
|
What is angle C+D |
180 degree |
||||||||||||||||||||
|
Why? |
Because adjacent anges of parallelogram are supplementary |
||||||||||||||||||||
|
So, Let C+ D = 180 degree be equation 2 |
|
||||||||||||||||||||
|
From equation 1 and 2, what we get in LHS and RHS |
B+C = C+D |
||||||||||||||||||||
|
Simplifying this A+B = B+C what we get? |
B=D |
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
Therefore Opposite angles A=C and B=D hence proved |
|
||||||||||||||||||||
|
|
|
||||||||||||||||||||
3. Problems on parallelogram based on its properties |
|
|
||||||||||||||||||||
Modal Sum |
In Parallelogram ABCD, and O is the center given that angle OAD = 80 degree, ODC=23 degree and angle DOC = 117 degree. Find all other angles. |
Ans: Angle A = 80+40=120 degree, B = 23+37=60, C = 80+40=120, D = 23+37=60 |
||||||||||||||||||||
|
Teacher start writing the rough diagram and values on the board. |
|
||||||||||||||||||||
|
How many angles are formed when 2 diagonals intersect each other |
4 angles are formed |
||||||||||||||||||||
|
What is angle AOB is equal to? |
117 |
||||||||||||||||||||
|
Angle DOC = 117 = AOB, why? |
Vertically opposite angles |
||||||||||||||||||||
|
What is angle formed at center of a point? |
360 degree |
||||||||||||||||||||
|
Good |
|
||||||||||||||||||||
|
So what is 117 + 117 is equal to? |
234 |
||||||||||||||||||||
|
What is 360-234 equal to? |
126 |
||||||||||||||||||||
|
What is 126/2 equal to? |
63 |
||||||||||||||||||||
|
So what is angle AOD equal to? |
63 degree |
||||||||||||||||||||
|
AOD is equal to COB, why? |
Vertically opposite angle |
||||||||||||||||||||
|
So, what is AOD = COB =63 degree |
|
||||||||||||||||||||
|
Now in triangle AOD, what is angle sum property of triangle say? |
The sum of interior angle of triangle is 180 degree. |
||||||||||||||||||||
|
So, you know 2 angles, what is the third angle? |
180-63+80 = 37 degree |
||||||||||||||||||||
|
Consider 2 parallel lines AD and BC, and transvers line AC cutting this parallel lines |
|
||||||||||||||||||||
|
Here, DAO=OCB, why? |
Alternate interior angles are same |
||||||||||||||||||||
|
So what is DAO=OCB=? |
80 degree |
||||||||||||||||||||
|
What is OBC =? |
37 degree |
||||||||||||||||||||
|
What is OBA =? |
23 degree |
||||||||||||||||||||
|
|
|
||||||||||||||||||||
|
Apply one property of parallelogram and tell, What is OAB =? |
40 degree |
||||||||||||||||||||
|
Why? |
As adjacent angles of parallelogram is 180 so 180-80+23+37 = 180-140 = 40 |
||||||||||||||||||||
|
SO now tell me what are the 4 angles of parallelogram formed? |
|
||||||||||||||||||||
Drill Sum |
In a parallelogram ABCD if one angle is A = 50 degree, find all other angles. |
Ans: Angle A = 50 degree, B = 130, C = 50, D = 130 |
||||||||||||||||||||
|
|
|
||||||||||||||||||||
Revisit ICA |
In Parallelogram ABCD, and O is the center given that angle OAB = 70 degree, OBC = 30 degree and angle AOD = 100 degree. Find all other angles. |
Ans: Angle A = 50+70=120 Angle B = 30+30=60, C = 120 D = 60
|
||||||||||||||||||||
|
|
|
||||||||||||||||||||
Application |
|
|
||||||||||||||||||||
|
If one angle of parallelogram is 90 degree and opposite sides are equal then what is that figure called? |
Rectangle |
||||||||||||||||||||
|
If one angle of parallelogram is 90 degree and all sides are equal then what is that figure called? |
Square |
||||||||||||||||||||
Closure |
Students in this class, you have learnt how to solve problems based on parallelogram using its properties. Now I will be ending this class. In next cass you will learn how to prove in parallelogram opposite sides are equal. |
|
||||||||||||||||||||
Home Assignment |
In a paralleleogram ABCD, if Angle DAB = 4c and ADC = 5c, find all other angles |
Ans: 5c+4c=180 c= 30 A= 120 degree B= 150 degree C= 120 B = 150 |
No comments:
Post a Comment